이 블로그 검색

Taylor series proof

Taylor series proof

Taylor series proof

Let x,t,aR ,f(x) be a real valued function s.t. infinite times differentiable

and let

Dnf(x)=dnfdxn , jn(t)=(1)n+1(xt)nn!

by solving this simple integral, we get 

ax(xt) D2f(t) dt=f(x)f(a)f(a)(xa)

and using integration-by-parts method, we are able to observe that

ax(xt) D2f(t) dt

=[j2(t)D2f(t)]axaxj2(t)D3f(t)dt

=[j2(t)D2f(t)]ax[j3(t)D3f(t)]ax+axj3(t)D4f(t)dt

=[j2(t)D2f(t)]ax[j3(t)D3f(t)]ax+[j4(t)D4f(t)]axaxj4(t)D5f(t)dt 

since jn(x)=0.jn(a)=(xa)n(1)n+1n! the equation above becomes 

=(xa)2D2f(a)2!+(xa)3D3f(a)3!+(xa)4D4f(a)4!

thus, if

limnaxjn(t)Dn+1f(t)dt=0

then,

ax(xt) D2f(t) dt=f(x)f(a)f(a)(xa) 

=(xa)2D2f(a)2!+(xa)3D3f(a)3!+(xa)4D4f(a)4!

f(x)=f(a)+(xa)D1f(a)1!+(xa)2D2f(a)2!+(xa)3D3f(a)3!

f(x)=limnk=0n(xa)kDkf(a)k!

댓글 2개:

  1. 아는 notation이 없다는거임

    답글삭제
    답글
    1. 엥 시간이 왜 오전 10시 49분에 댓 달았다고 뜨는거거지 ㄷㄷ

      삭제

댓글도 $\displaystyle \LaTeX{} $ 를 지원합니다!
\$(latex code)\$ 로 수식을 입력하세요!