이 블로그 검색

mathjax test

Instead of using KaTeX I decided to use mathjax on this blog 
because KaTeX was being SPACE-SENSITIVE like who asked for that BS??

$f_{xy}=f_{yx}$

$E=mc^2 +                                   AI$
\(f (x)\)
$e^{i \square}=\cos(\square)+i \sin(\square)$

$$\frac{\partial f}{\partial x} \neq \frac{\partial f}{\partial y}$$

and in calculus 1, we learn that 
$$\forall \epsilon >0 , \exists \delta ~\text{S.T.} ~0<|x-a| <\delta \implies |f(x)-L| < \epsilon $$  

$$a b$$
$$a  b$$
$$a   b$$
\[ non-space sensitive                        gotta use tildes   \]
 
$$ \lim_{  (x,y) \to (a,b)   }~f(x,y) =L \stackrel{\text{def}}{\iff} \forall  \epsilon >0, \exists \delta >0 ~\text{S.T.}~ \sqrt{ (x-a)^2 +(y-b)^2 } < \delta \implies |f(x,y)-L| < \epsilon $$
$$ \lim_{  (x,y) \to (a,b)   }~f(x,y) =L $$ 

$$\stackrel{\text{def}}{\iff} $$

$$\forall  \epsilon >0, \exists \delta >0 ~\text{S.T.}~ \sqrt{ (x-a)^2 +(y-b)^2 } < \delta \implies |f(x,y)-L| < \epsilon $$
$$\begin{aligned}&\lim_{  (x,y) \to (a,b)   }~f(x,y) =L   \\\\&{\Updownarrow}\\ \\ &\forall\epsilon >0, \exists \delta >0 ~\text{S.T.}~ \sqrt{ (x-a)^2 +(y-b)^2 } < \delta \implies|f(x,y)-L| < \epsilon \end{aligned}$$


댓글 1개:

댓글도 $\displaystyle \LaTeX{} $ 를 지원합니다!
\$(latex code)\$ 로 수식을 입력하세요!